TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION

- 1.1 WELCOME ... 3
- 1.2 PRODUCT OVERVIEW ... 3
- 1.3 CONCEPTS AND TERMINOLOGY .. 3
- 1.4 COMPONENTS ... 5

CHAPTER 2 – USING THE WLM

- 2.1 QUICK START GUIDE ... 6
- 2.2 USAGE NOTES ... 6

CHAPTER 3 – INTERFACE AND CONTROLS

- 3.1 INTERFACE .. 10
- 3.2 CONTROLS AND DISPLAYS ... 11

CHAPTER 4 – THE WAVESYSTEM

- 4.1 THE WAVE SYSTEM TOOLBAR ... 17
- 4.2 PRESET HANDLING ... 17
- 4.3 INTERFACE CONTROLS .. 20
- 4.4 WAVES PREFERENCES (PRO TOOLS ONLY) .. 22

APPENDIX

- ... 23
Chapter 1 – Introduction

1.1 Welcome

Thank you for choosing Waves! In order to get the most out of your Waves processor, please take the time to read through this manual.

In conjunction, we also suggest you become familiar with www.wavesupport.net. There you will find an extensive Answer Base, the latest Tech Specs, detailed Installation guides, new Software Updates, and current information on Authorization and Registration.

By signing up at www.wavesupport.net, you will receive personalized information on your registered products, reminders when updates are available, and information on your authorization status.

1.2 Product Overview

The Waves WLM Loudness Meter plugin provides precision loudness measurement and metering for broadcast, movie trailers, games, packaged media and more. Fully compliant with all current ITU, EBU and ATSC specifications, the WLM offers comprehensive Momentary, Short Term, Long Term, Loudness Range, and True Peak readouts, plus a unique warning and logging system that keeps track of your levels, and lets you know when you’ve exceeded them—or fallen short. Ideal for content creators and post production houses as well as cable head-end facilities, WLM is an affordable, all-in-one loudness metering software solution.

1.3 Concepts and Terminology

Loudness Metering

Loudness metering measures signal loudness using special weight filtering and averaging techniques which allow perceived loudness levels to be expressed numerically, using a variety of measurement scales:
• LU = Loudness Units
• LUFS = Loudness Units relative to Full Scale
• LKFS = Loudness, K-weighted, relative to Full Scale
• dBFS = Decibels relative to Full Scale
• dBTP = Decibels True Peak

Measurement Standards

WLM is fully compliant with all contemporary loudness measurement standards:

• ITU-R BS.1770-2
• EBU R-128
• ATSC A/85

Measurement Methods

WLM allows the user to choose one of three measurement methods:

• EBU uses foreground audio as the loudness anchor.
• LM1 measures and averages loudness across the whole program.
• DIAL uses dialog as the loudness anchor, measuring and averaging loudness only when dialog is detected.

Timescales

WLM provides readouts for four timescales:

• Momentary
• Short Term
• Long Term
• True Peak
Weighting

WLM provides readouts for the following weighting types:

- ITU-R B.S.1770 – K-Weighting
- Leq(a)
- Leq(b)
- Leq(c)
- Leq(m)

For in-depth information about measurement methods, measurement standards, timescales, and weighting, please see the Appendix at the end of this manual.

1.4 Components

The WLM has three components:

- Mono
- Stereo
- Multichannel 5.1

In all components, measurements are summed into a single number. To view measurements for a single channel or combination of channels, use the Channels control.
Chapter 2 – Using the WLM

2.1 Quick Start Guide

The WLM’s default preset is designed to check levels as per both EBU and ATSC specs. As both specifications allow some tolerance, the target is set to -24 dB, 1 dB lower than the EBU standard; however, -1 dB is not considered a violation.

1. Identify your loudness requirements.
2. Insert WLM on your program output.
3. Select the appropriate preset.
4. If you would like to create a log file, click the Export CSV button.
5. Play your program through WLM.
6. Watch the meters to view the loudness measurements.

After playing the entire program, check the Long Term meter to ascertain that your program complies with the required target.

2.2 Usage Notes

The following are a few of the WLM features designed to enhance your workflow.

Presets

WLM presets fulfill most of the requirements commonly encountered by post production engineers and content providers.

- The WLM factory default is designed to cover most cases, and its results will meet both EBU and ATSC recommendations for most programs.
- The “EBU R-128 18 dB” preset complies with the recommendations specified in the EBU-R 128 and its accompanying technical papers including tech 3341 – 3343 and ITU-R B.S. 1770-2
- The “ATSC A85” preset features follows recommendations specified by the Advanced Television Systems Committee.
Set As Default Preset

To save a particular setup as the WLM default, click Save and choose Set As Default Preset. (You can still load factory presets or saved presets.)

Logging

To document your metering history, the WLM can generate CSV log files which document the readings of all three measurement methods (EBU, LM1, DIAL) simultaneously, and can be imported into spreadsheets such as Microsoft Office Excel or Open Office Calc.

To create a log, click Export CSV and choose from the following:

- **Select Real-Time CSV File** – Choose this option if you need ongoing infinite logging over a real-time audio stream. Remember to create the CSV log file in advance and the logging will take place in real time during measurements. *(Recommended for Pro Tools RTAS.)*
- **Select Off-Line CSV File** – Choose this option when you want to scan a premixed file and draw a log. This file is written only when the WLM plugin is closed, and logs up to four hours of measurements. So, in case you forget to set a real-time log file, you can save an Off-Line CSV which will contain loudness information of the first 4 hours of measurements carried out by that plugin instance. *(Recommended for Pro Tools Audiosuite.)*
Warnings

The WLM issues warnings when loudness targets are not met or exceeded.

Short Term Min – When short term loudness falls below the minimum value, the display appears in light blue until loudness is back above the minimum for 5 seconds. This warning is also registered by the Unders counter and in the CSV log file.

Short Term Max – When short term loudness exceeds the maximum value, the display appears in red until loudness falls back below the maximum for 5 seconds. This warning is also registered by the Overs counter and in the CSV log file.

True Peak Max – When True Peak loudness exceeds the maximum value, the display appears in red until the peak hold numeric display is reset.

Whenever a warning is issued, an asterisk () will appear in the corresponding warning column of the CSV log.*
Automation Warning

The WLM registers Overs and Unders in the counters below the Short Term numeric display. If you would like to know when these readings occurred, you can either refer to your log, or use the Automation Warning feature.

The WLM includes a special control that does not appear on the plugin interface, but does show up in the automation parameters. When the host is set to write automation for the Automation Warnings control, it will display a line in the middle of the lane indicating compliant loudness levels. When an Over is detected, it will write a step to the maximum value; conversely, it will display a downward step when an Under is detected:

You can use this automation lane to identify parts of the program that require further attention. Adjust the loudness immediately preceding and during the event; once you have fixed the problem area, ascertain the warning does not re-occur by resetting the WLM and measuring the section again, starting a bit before the Over appears.
Chapter 3 – Interface and Controls

3.1 Interface

![Image of Waves WLM Loudness Meter interface]

-23.3 LUFs
-24.4 LUFs
8 LU

EBU R-128 LUFS 18

Momentary

True Peak

-8.0 dBTP

Method
- EBU - LM1 - DIAL

Channel
- Stereo -

Custom Pre Filtering
- On - Freq - Slope

- 15000 - 0

- 150 - 0

Export CSV

Target

Export CSV

Logging

Momentary Scale
- LUFS 18 dB -

True Peak Max

- ITU 1770 -

Short Min
- -31.0 -

Short Max
- -18.0 -

Weighting

- ITU 1770 -

Method
- EBU - LM1 - DIAL

Channel
- Stereo -
3.2 Controls and Displays

Meters Section

1. **Short Term** displays (in LUFS) perceived short term loudness.

2. **Long Term** displays (in LUFS) perceived loudness averaged across the program signal that passes through the plugin during the period specified by the Integration Time Counter.

3. **Range** displays (in LU) the overall loudness range across the program signal that passes through the plugin.

4. **Momentary** displays (in LUFS) momentary loudness levels, according to the Momentary scale control settings. A peak value indicator displaying maximum
momentary loudness is located to the right of the bar meter, and can be reset by clicking on it.

5. **True Peak** displays (in dBTP) inter-sample peaks which do not register in the sample data but may occur during reproduction of the digital signal. A peak value indicator displaying maximum True Peak is located to the right of the bar meter, and can be reset by clicking on it.

Range: -48 to +6

6. **Unders** displays the number of times the signal goes below the specified Short Term Min value indicated in the settings panel.

7. **Overs** displays the number of times the signal exceeds the specified Short Term Max value indicated in the settings panel.

8. **Measurements Play/Pause** determines if program loudness is registered in the WLM memory for averaging long term loudness range. When Play is activated, loudness is registered and averaged.

9. **Follow Transport** determines if measurement starts and stops according to host application transport controls. When engaged, the timer also starts and stops according to host application transport controls.

10. **Timer** indicates the amount of time measurements have been taken and integrated.

11. **Reset** resets the Long Term, Range, Overs and Unders counters and returns the integration timer to 00:00:00.
Settings Panel

The Settings Panel is collapsible, hiding it from view when not in use.

12. Method determines the measurement method.

- **EBU** uses foreground audio as the loudness anchor, as per the EBU R-128 standard, and all current specifications incorporated in ITU-R BS.1770-2.
- **LM1** measures and averages loudness across the whole program.
- **DIAL** uses the dialog as the anchor element, measuring and averaging loudness only when dialog is detected.

13. Weighting determines the type of weighting filter.

Range: ITU-R B.S.1770 (default), Leq(a), Leq(b), Leq(c), Leq(m), none

14. Channel determines the channels being measured.

15. Short Term Max determines the maximum short term level. When short term loudness exceeds the maximum value, the display appears in red until loudness falls back below the maximum for 5 seconds.

Range: Off, -12 to -36; in Leq(m)

70 to 92 dB
16. **Short Term Min** determines the minimum short term level. When short term loudness falls below the minimum value, the display appears in light blue until loudness is back above the minimum for 5 seconds.

Range: -12 to -90, Off; in Leq(m), 42 to 83 dB

Please note: When Leq(m) is selected, Short Term Max and Min controls scale to dBSPL positive values.

17. **True Peak Max** determines the maximum true peak level. When True Peak loudness exceeds the maximum value, the display appears in red until the peak hold numeric display is reset.

Range: 0 to -25 dBTP

18. **Target** determines the target level.

Range: -33 to -9 dB

19. **Custom Pre Filtering** provides low pass (LPF) and high pass (HPF) filters that pre-filter the audio prior to loudness measurement, useful when checking content intended for playback on devices with limited frequency ranges, such as handheld gaming consoles.

LPF On

Range: On, Off

Default: Off

LPF Frequency

Range: 2000 Hz to 18000 Hz

Default: 10000 Hz
LPF Slope

Range: 12 dB/Oct, 6 dB/Oct
Default: 12 dB/Oct

HPF On

Range: On, Off
Default: Off

HPF Frequency

Range: 20 Hz to 2000 Hz
Default: 120 Hz

HPF Slope

Range: 12 dB/Oct, 6 dB/Oct
Default: 12 dB/Oct

20. Momentary Scale determines the scale displayed in the momentary bar meter.

- LKFS: -6 to -54
- LU 18 dB: 17 to -31
- LUFS 18 dB: -6 to -54
- LU 9 dB: 9 to -18
- LUFS 9 dB: -14 to -41
21. Logging displays CSV logging file options.

- **Select Real-Time CSV File** – Choose this option if you need ongoing infinite logging over a real-time audio stream. Remember to create the CSV log file in advance and the logging will take place in real time during measurements. (*Pro Tools RTAS should choose this method.*)

- **Select Off-Line CSV File** – Choose this option when you want to scan a premixed file and draw a log. This file is written only when the WLM plugin is closed, and logs up to four hours of measurements. So, in case you forget to set a real-time log file, you can save an Off-Line CSV which will contain loudness information of the first 4 hours of measurements carried out by that plugin instance. (*Pro Tools Audiosuite users should choose this method.*)

Please note: You must create your log file prior to measuring your program. Off-line logs are generated only upon termination of the plugin instance.
Chapter 4 – The WaveSystem

4.1 The WaveSystem Toolbar

All Waves plugins feature the WaveSystem toolbar which takes care of most administrative functions you will encounter while working with your Waves software. The features of the WaveSystem toolbar are the same on practically all Waves plugins, so familiarity with its features will be helpful whichever plugin you are using.

Toolbar Functions

- Opens the plugin About box
- Undo
 Undoes the last 32 actions
- Redo
 Redoes the last 32 undone actions
- L/R Arrows
 Move to the previous or next preset
- Load
 Recalls presets from file
- Save
 Saves presets in the Waves file formats
- ?
 Opens the PDF manual for the plugin you are using

4.2 Preset Handling

Preset Types

Factory Presets are permanent presets in the Load menu. Factory presets cannot be overwritten or deleted. When applicable, different component plugins may have different factory presets.

User Presets are your favorite settings of the plugin saved as a preset in the Load menu, under ‘User Presets’. User Presets can be overwritten and deleted.

Setup Files may contain more than one preset. For example, a single file can contain all the presets for a session. When you open a Setup File, all its setups become part of your Load pop-up menu for fast access. This can be particularly useful with multiple
instances of a plugin in a single session. By saving all the settings you create into a single Setup File, they can all be quickly available for every instance of that plugin.

Loading Presets and Setups

Click on the Load button to see the Load pop-up menu. The menu is divided into four sections. If a section is not currently available it will not appear in the Load pop-up menu.

Open Preset File... Select to open any setup or preset file, whether from the Library or your own creations.

‘Filename.xps’: Displays any currently loaded Setup File and its presets.

Factory Presets: Displays the default Factory Presets.

User Presets: Displays any loaded User Presets.

Saving Presets and Setups

Click on the Save button to see the Save pop-up menu. Four options are available. If an option is not currently available it will be grayed out and inaccessible.

Save to New File... Select this to start a new Setup file. There are two prompts - first for the setup filename, then for the preset name. You must provide a name for both the setup file and the preset. Click OK (ENTER) to complete the save. It is a good idea to create a folder in which to save several setup files for a project.

Save ‘File Name’ – “Preset Name” Overwrites the settings of the loaded preset (whether a User Preset or a preset from a Setup File) with the current settings. If a Setup File is currently loaded, the name of the Setup File is displayed followed by the name of the preset itself. If a User Preset is loaded, its name is displayed.
Save to ‘File Name’ As… Saves the current settings as a new preset into the Setup file that is open (if one is not open, the option is grayed out). You will be prompted to give the preset a name.

Put into Preset Menu As… Save the current settings into a User Preset that will always be in your Load menu (until deleted). You will be prompted to give this preset a name. User Presets are stored in the plugin’s preference file.

Deleting Presets
You may delete User Presets and presets within a Setup File. Factory Presets and Setup Library files cannot be deleted or overwritten.

1. Hold the Command (Mac)/Control (PC) key down.
2. Click-and-hold the Load button to see the pop-up menu.
3. While still holding the Command/Control key, select the preset or setup to delete.
4. A confirmation box will appear, allowing you to cancel or ‘OK’ the deletion.

Set As Default Preset
The WLM save toolbar allows you to set the current preset as your plugin default. When you set a current preset as the Default Preset the plugin will open with this preset each time you launch a fresh instance.
4.3 Interface Controls

Controls can be in one of three states:

1. **Not Selected** where the control is not the target of any user entry
2. **Selected** where the control is the target of mouse control entry only
3. **Selected and Active** where the control is the target for both mouse and keyboard entry

Toggle Buttons

Toggle buttons display the state of a control, and allow switching between two or more states. **Single-click** to change the control’s state. Some toggle buttons have a text display which updates with the current setting, and others (bypass, solo, or monitoring toggles) illuminate when the control is active.

Some plugins have **link buttons** between a pair of toggle buttons, allowing click-and-drag adjustment while retaining the offset between the controls.

Value Window Buttons

Value windows display the value of a control and allow **click-and-drag** adjustment, or **direct control via the keyboard**.

- **Using the mouse**, click-and-drag on the value window to adjust. Some value windows support left/right, some up/down (as you hover over a button, arrows will appear to let you know which direction of movement that button supports). You may also use your mouse-wheel to adjust parameter values.
- **Using the arrow keys**, click once with mouse to select the button, and then use up/down – left/right (depending on the direction supported by that button) to move in the smallest incremental steps across the button’s range (holding down the arrow keys will move faster through the range).
- **Using key entry**, double click on the button to open the value window, and directly enter the value from your keyboard. If you enter an out of range number, the button stays selected but remains at the current setting. (System beeps if system sounds are on.)
Some plugins have **link buttons** between a pair of value windows, allowing click-and-drag adjustment while retaining the offset between the controls.

Sliders

Click or scroll the mouse-wheel on the slider itself or anywhere within the sliders track. The numerical value of the slider settings is displayed in a hover window above the slider path.

Hover Box

Hovering boxes will appear and display the control value when hovering with the mouse over the control.

Multiple Control Selection

One of the most powerful features of the WaveSystem is the ability to select and adjust multiple controls simultaneously. Using the mouse, drag-select the desired group of buttons or graphic controls by clicking and holding at a point outside the controls, and forming a rectangle that includes the controls you wish to adjust. Alternatively, press and hold Shift while clicking the mouse on any control you wish to link. This method is useful when you want to select two or more controls that are not adjacent to one another.

TAB Functions

TAB moves the ‘selected’ status to the next control, with shift-TAB moving in the reverse direction. Additionally, the Mac has an option-TAB function for ‘down’ movement and shift-option-TAB for ‘up’ movement where applicable. If you have several Value Window Buttons selected, TAB functions will take you through the selected controls only. Hitting Esc or Return will return the ‘focus’ to the DAW application.
4.4 Waves Preferences (Pro Tools only)

When launching Pro Tools, hold Shift to view the Waves plugin Preferences window. The following options are available:

- Don't use AudioSuite plugins
- Don't use RTAS plugins
- Rescan all plugins
- HUI control surface support (low resolution)
- Enable single-click text entry
Appendix

Audio Loudness Metering

Loudness is the perception of audio level as perceived by humans. In broadcast, it is especially important that transmitted audio levels are consistent; otherwise, listeners would need to adjust the volume for every song, movie scene, commercial advertisement, and so on.

Loudness metering measures signal loudness using special weight filtering and averaging techniques which allow perceived loudness levels to be expressed numerically.

These numbers can be used by broadcasters to identify the loudness of a particular program or advertisement to ascertain that it is consistent with station or network regulations. Many countries enact laws legislating permissible loudness levels, and empower broadcast authorities to monitor levels and impose fines on broadcasters who violate these guidelines.

Broadcast networks typically provide loudness specifications to their contractors, post production and mixing facilities. These specifications indicate acceptable loudness target values, as well as which weighting filters and timescale need to be taken into consideration. In many cases, they will even recommend a specific device that measures program loudness according to their specifications.

Loudness Theory and Practice

The WLM was created to comply with contemporary loudness measurement standards, as described in a number of technical papers as listed herein:

ITU-R BS.1770-2 (March 2011) - Algorithms to measure audio programme loudness and true-peak audio level.
http://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-2-201103-I!!PDF-E.pdf
This recommendation by the International Telecommunication Union is a staple in contemporary loudness measurements. It is a second generation revision, after the original specification created widely-accepted measurement guidelines which utilized a special weighting curve (K weighting) and established the LKFS measurement unit: Loudness K-Weighted relative to Full Scale.

EBU R-128 (August 2011rev.) - *Loudness normalisation and permitted maximum level of audio signals.*

http://tech.ebu.ch/docs/r/r128.pdf

This recommendation by the European Broadcasting Union is gaining wide acceptance as standard loudness practice across Europe. The R-128 is a guideline paper which considers the ITU recommendations and expands upon them, referencing to specifications described in another 4 technical papers:

- **EBU Tech 3341** Metering Specification
- **EBU Tech 3342** Loudness Range Descriptor
- **EBU Tech 3343** Practical Guidelines
- **EBU Tech 3344** Distribution Guidelines

The EBU spec takes into account that voice and dialog loudness can miss certain loud passages, and uses the “Foreground” sound as the basis for loudness, Using a special gating scheme with an absolute and a relative gate to identify background sound and not include it in the averaged long term loudness.

ATSC A/85 (July 2011) - *Techniques for Establishing and Maintaining Audio Loudness for Digital Television.*

This recommendation paper from the Advanced Television Systems Committee is gaining wide acceptance from US broadcast networks, especially with regard to digital TV. This latest revision approaches the EBU recommendations, but maintains that Dialog be used as the anchor for loudness measurements. While using a dialog anchor has proven highly accurate for talk and narration-based programs, for action and musical programs, measuring all audio provides better results.
Measurement Method

WLM allows the user to choose from three measurement methods:

- **EBU** – As per the EBU recommendation, WLM displays three different timescales: Momentary, Short and Long/Integrated, as well as True Peak and Loudness Range, which are also part of the EBU recommendation. The Momentary scale can show 2 resolutions, 18 dB and 9 dB in either LUFS or LU. With EBU selected as the measurement method, WLM uses foreground audio as the loudness anchor and, while it will measure short term loudness across the whole program, it will average and integrate only the foreground loudness to the long term measurement, gating out sections that fall more than 8 dB below the normal foreground audio. (The exact specification may be found online.)

The WLM was tested using qualification material supplied by PLoud and EBU. To be fully compliant with the EBU recommendation, the weighting has to be per ITU-R BS 1770 and the target loudness is always -23 LUFS = 0 LU. Factory presets marked “EBU” ensure that its settings are fully EBU-compliant.

- **LM1** – This method sometimes called “All” measures and averages loudness across the whole program, without selecting any single element as an anchor.

- **DIAL** – This method uses dialog as the loudness anchor, measuring and averaging loudness only when dialog is detected. It uses the same specifications as the LM1 but uses the Dialog as the anchor element, effectively measuring and averaging loudness only when dialog is detected, gating out any sections that do not include dialog.

Weighting and Timescales

One of the basic concepts of loudness measurement theory is *weighting*. Essentially human hearing is profiled with a curve that describes our sensitivity to frequencies. The general rule is that all frequencies generated at the same energy will seem louder in the mid-range frequencies, and lower in very high and very low frequencies. This rule has
different specific results at different general SPL levels. i.e., the lower the overall energy, the bigger these differences will become, and at low levels, the ear will focus on mid and high mid frequencies and completely lose perception of the ultra high and very low frequencies.

This basis of this theory is well known as the Fletcher Munson equal loudness curves, which describe frequency response “Filters” that enable humans to perceive equal loudness across the audible frequency range. Additionally, the “opposites” of these filters were used to filter audio content and weigh its relative loudness to the human ear. Most common among these “weighting filters” is the A weighting, used in Leq(a) based loudness measurements for acoustic measurements. The refinement of weighting led to the success of K-Weighting, which is the contemporary loudness curve recommended in the ITU-R B.S.1770 as well as the EBU and ATSC specifications.

Another critically important concept in loudness metering is the timescale of the measurement. Psychoacoustic theory stresses that we perceive loudness from the average, rather than the momentary peaks, i.e., a very short and loud transient peak won’t make as big an impression on our perception of loudness, but a similar event lasting around half a second can cause discomfort. The same amount of energy lasting for several seconds or more will have an impact on our longer term perception of loudness we hear. Several timescales that affect our perception of loudness have been established and documented in the ITU and EBU recommendations:

- **Momentary** measures 400 ms of signal, sufficient for the shortest loudness timescale. As this measurement is quite fast, WLM displays it using a bar meter with smoothed release ballistics.

- **Short Term or Short** averages loudness over a period of 1 to several seconds, with some overlap between the time slices. WLM shows this number in a large numeric display; dB is rounded to the nearest whole number; the same short term value with 1 decimal space is visible within the same window in a smaller font.
• **Long Term or Integrated** relates to ongoing averaging of the whole program. This is very often the basic value that interests loudness users. Over time, the program averages to the required target.

• **True Peak** provides sub-sample accuracy for measuring inter-sample peaks in digital audio. Depending on the current wave front, two consecutive samples may interpolate to a higher one that is missed in quantization.